
 

 
Abstract—Router-assisted explicit-feedback congestion control 

protocols have recently been introduced to overcome the 
inefficiency problem of TCP in high bandwidth-delay product 
(BDP) wired networks. However, two main challenges are 
encountered when applying this kind of congestion control to 
wireless networks. One is how to distinguish the two kinds of 
packet loss (non-congestion-related loss and congestion-related 
loss) in lossy wireless networks as well as how to react to them 
accordingly and properly. The other is how to probe the 
unknown bandwidth capacity of a wireless link which is required 
in calculating router feedback. Through detailed analysis of these 
challenges, we have proposed some practical and novel 
enhancements on router-assisted congestion control for wireless 
environment. We have also implemented these enhancements in a 
router-assisted congestion control protocol called QFCP. 
Simulation results using ns-2 show that it can fairly allocate 
wireless bandwidth resource in heterogeneous networks. 
 

I. INTRODUCTION 
 It is well-known that loss-based end-to-end congestion 
control such as TCP [1] does not work efficiently in lossy 
wireless networks. One reason is that TCP treats packet loss 
as congestion signal but it can not distinguish non-congestion-
related loss (bit error) from congestion-related loss (buffer 
overflow) leading to underutilization of wireless link. Another 
reason is that after experiencing a packet loss TCP needs to 
take many RTTs to recover the previous high throughput. This 
effect is aggravated in high-speed wireless networks as TCP 
only increases its window by one packet per RTT which is too 
conservative for high-speed or long-delay links. 
 Router-assisted congestion control (e.g., XCP [2], RCP [3], 
QFCP [4]) is originally introduced to overcome the 
inefficiency problems of TCP in high bandwidth-delay 
product (BDP) wired networks, such as low link utilization, 
saw-tooth-like throughput, and large queueing delay. With the 
help of explicit feedback from routers to end hosts, competing 
flows are able to converge to the fair-share sending rate within 
a few RTTs and maintain high utilization of the bottleneck 
link. While for lossy wireless networks, experiments [5] show 
that XCP can achieve higher throughput than TCP. However, 
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we note that XCP’s relatively better performance is largely 
due to its fast window growth instead of robustness to 
wireless loss, and there is still room for improvement. 
 First, XCP still can not differentiate the two kinds of packet 
loss. Actually in the current implementation of XCP the 
sender reacts to packet loss in the same way as TCP does [6]. 
The congestion window is halved and the throughput is 
slowed down unnecessarily when bit error occurs in 
transmission. Although the impact of packet loss is alleviated 
in XCP since it can grab the unused bandwidth much faster 
than TCP, the flow throughput still suffers from frequent 
window halving in lossy networks. 
 Second, router-assisted congestion control requires an exact 
and fixed value of link bandwidth set as a parameter in the 
router’s control algorithm in advance. But for a wireless link, 
due to shared-media access contention, half-duplex, and 
changing physical conditions, it is very hard to do such kind 
of setting. For example, for an 802.11b wireless node, it can 
even dynamically change its MAC-layer data rate to 1, 2, 5.5, 
or 11 Mbps making a fixed setting of bandwidth parameter 
almost impossible. All of these factors cause estimation error 
and performance deterioration for router feedback control. 
The authors of [5] show that XCP is unable to maintain 
fairness and stability with improper estimation of the link 
capacity parameter. Thus, we need a more intelligent 
algorithm that can probe the variable link bandwidth in 
wireless networks. 
 Authors of XCP-b [7] also find that XCP does not work 
well on shared-access multi-rate media such as 802.11 WLAN 
and propose an algorithm for XCP to probe the available 
bandwidth. But the probing ability of their algorithm depends 
on the buffer size Qmax and may not be suitable for wireless 
nodes with small buffers but in large BDP networks. XCP-r 
[8] suggests that let the receiver compute the congestion 
window size and send the value back to the sender through 
ACK packets. This modification on XCP partly solves the 
window mismatching problem caused by ACK loss assuming 
no packet loss on the forward path. We make the first effort to 
combine the two problems together and solve them in a single 
control framework. We choose QFCP [4] as the groundwork 
to develop a robust congestion control protocol that is suitable 
for wireless networks. In particular, we try to find a way to 
probe the link capacity independent of the buffer size so that 
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the algorithm can be applied on routers with any buffer size or 
bandwidth capacity. 
 

II. ROUTER-ASSISTED CONGESTION CONTROL 
 Generally router-assisted congestion control can refer to 
any mechanism that involves routers in congestion control 
such as kinds of Active Queen Management (AQM) schemes 
on routers. But here we would like to restrict the meaning of 
this term to protocols that use explicit multi-bit router 
feedback instead of implicit one-bit signal of packet loss to 
indicate the network congestion condition so as to 
differentiate from the traditional TCP/AQM approach. We 
now briefly describe XCP and QFCP as examples to show 
some details of this kind of congestion control. 
 XCP [2] is a window-based congestion control protocol that 
uses explicit feedback from routers to adjust the congestion 
window size of senders. XCP introduces a new header on each 
packet to carry flow information such as throughput, round-
trip time (RTT), delta-throughput (carrying the throughput 
change value allowed by upstream routers), and reverse-
feedback. The Efficiency Controller (EC) on each router 
periodically calculates the available bandwidth F as: 

( ) dqyCF /⋅−−⋅= βα , 
where C is the capacity of the output link, d is the control 
interval, y is the aggregate input traffic rate measured in the 
last period d, and q is the minimum queue length observed in 
the last period d. α and β are two constants and set as 0.4 and 
0.2263 respectively to make the system stable. The control 
interval d is set to be the average RTT of all flows traversing 
this controller. Then the Fairness Controller (FC) on this 
router computes the per-packet feedback by distributing the 
available bandwidth F among all flows: If F > 0, allocate the 
positive feedback equally on all flows; If F < 0, allocate the 
negative feedback proportional to each flow’s current 
throughput. 
 The feedback is computed for each packet and is copied to 
the delta-throughput field only if this feedback is less than the 
current value in that field. So the delta-throughput field will 
finally store the feedback calculated by the bottleneck router. 
When a packet reaches the receiver, the receiver copies the 
delta-throughput into the reverse-feedback field of the 
corresponding acknowledgment (ACK) packet and sends the 
ACK to the sender. When the sender receives this ACK, it 
adjusts its congestion window (cwnd) as: 

( )MSSRTTfeedbackcwndcwnd ,max ⋅+= , 
where RTT is the round-trip time measured by the sender and 
MSS is the maximum segment size. 
 QFCP [4] is another router-assisted congestion control 
protocol for high-speed networks. Unlike XCP, QFCP gives 
per-flow feedback on flow rate instead of per-packet feedback 
on window adjustment. There are three fields in the new 
QFCP header of each packet: RTT, rate-request, and rate-
feedback. A router maintains a fair-share rate R for each 

output interface. This rate R is the maximum rate allowed for 
flows going through this interface during the current control 
interval T. T is set to be a moving average of RTTs of seen 
packets. At the beginning of every control interval the QFCP 
controller estimates the number of flows traversing this 
interface as: 

( ) ( )
( )TtR

tytN
−

= , 

where y is the input traffic rate measured in the last interval T, 
and R(t-T) is the flow rate feedback given in the last control 
interval. Then the controller updates its fair-share rate R as: 

( )
( )

( )tN
T

tq
C

tR
⋅−

=
β
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where C and q have the same meaning as in XCP, and β is a 
constant of 0.5. When a packet arrives at a router, the 
controller compares the value in the rate-request field with its 
own fair-share rate R and copies the smaller value back into 
that field. This rate-request field will eventually be copied into 
the rate-feedback field of the corresponding ACK packet and 
sent back to the sender by the receiver. On receiving an ACK, 
the sender reads the feedback and adjusts its congestion 
window as: 

( )MSSRTTfeedbackcwnd ,max ⋅= , 
where feedback is the router feedback on flow rate, RTT and 
MSS have the same meaning as in XCP. Thus, flows can send 
data at the highest rate allowed by all routers along the path, 
while routers periodically update the fair-share rate based on 
flow number estimation. Simulations show that both XCP and 
QFCP can achieve high utilization of large BDP links, but 
QFCP can further shorten flow completion time and help 
flows converge to fair-share rate faster [4]. 
 

III. WIRELESS ENHANCEMENTS 
 There are two challenges addressed here as applying router-
assisted congestion control to wireless networks. One is the 
unknown bandwidth capacity of a simplex contention-shared 
multi-rate wireless link. The other is how to deal with non-
congestion-related packet loss which commonly exists in lossy 
wireless networks. 

A. Enhancement for Unknown Bandwidth 
 In order to accurately calculate the feedback, the router 
must know the exact bandwidth capacity in advance. For both 
XCP and QFCP, the output link capacity C acts as an 
important parameter in the control algorithm. If the router 
underestimates the bandwidth capacity, it will underutilize the 
link and waste the valuable bandwidth resource. And if the 
router overestimates the capacity, it will give improper 
feedback to senders to increase their congestion windows and 
may cause queue growth and even buffer overflow 
(congestion). But it is very hard to decide a proper value of C 
for a wireless link in advance. One reason is that a wireless 
channel is shared by competing neighbor nodes and the 



 

number of nodes sharing this channel may change at any time. 
Another reason is that the wireless link bandwidth is affected 
by many changing physical conditions, such as signal 
strength, propagation distance, and transmitter power. For 
example, an 802.11 node can change its MAC-layer data rate 
dynamically for different physical conditions, which means 
the output bandwidth of this node and other neighbor nodes 
may also change. 
 Due to the inability to set the exact capacity of a wireless 
link, we need to design an adaptive algorithm that can finds 
and sets this capacity parameter by itself. We observe that the 
output traffic rate can be used to estimate the link capacity for 
an active network interface and we add the following formula 
in QFCP for link bandwidth probing: 

( )⎩
⎨
⎧

⋅+
≥

=
elseC

qifoutput
C

,1
1,

α
 

where q is the minimum queue length in packets observed in 
the last control interval, output is the output traffic rate, and α 
is a constant of 0.1. The basic idea is that: 
• If the minimum queue length q is greater than or equal to 

one packet, which means the output interface is busy and 
keeps sending data in the last control interval, then the 
output traffic rate can be a good estimation of the current 
link capacity. 

• If the minimum queue length is less than one packet, 
which means the output link is sometimes idle and 
underutilized during the last control interval, we can try 
to multiplicatively increase the link capacity estimation 
by a factor (1+α) and wait a control interval to see 
whether the queue is going to build up. 

 As to deal with the burstiness nature of packet switching 
network, we actually use the weighted moving average of 
output and q in the above formula to smooth out possible 
oscillation caused by packet burst: 

( ) outputavgwoutputwoutputavg _1_ ⋅−+⋅= , 

( ) qavgwqwqavg _1_ ⋅−+⋅= , 
where the weight w is 0.2. Repeat the above probing 
procedure for each control interval and we can finally find the 
proper bandwidth estimation. Note that if the link is always 
idle or underutilized (i.e., a non-bottleneck link), this 
estimation value may grow into infinity. So it is necessary to 
put an upper bound on the value. We can simply use the 
maximum MAC-layer data rate as the upper bound of C (e.g., 
11 Mbps for 802.11b, or 54 Mbps for 802.11g). And 
whenever this link becomes busy again, the above algorithm 
will adapt the bandwidth estimation to the correct value by 
using the output traffic rate. 
 There are also some implementation details we need take 
care of. Since the wireless link is simplex and the bandwidth 
is shared among uploading and downloading flows, the 
controller should count packets in both directions when 
computing the input traffic rate y. Furthermore, since our 
target steady state is not zero queue length but a resident 
queue with at least one packet, the formula to compute rate 

feedback should be changed accordingly: 
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 The parameter values (α, β) are chosen heuristically from 
experiments, and more precise and theoretical analysis for 
these parameters is left for future study. 

B. Enhancement for Packet Loss 
 For a sender in lossy wireless environment, it had better 
differentiate two kinds of packet loss: for non-congestion-
related loss (bit error), it should maintain the current window 
size; and for congestion-related loss (buffer overflow), it 
should slow down to prevent congestion collapse. 
Unfortunately, currently router-assisted congestion control 
protocols can not do such differentiation yet. For example, 
XCP simply inherits the standard TCP behavior when 
encountering packet loss [6]. That is, on receiving three 
duplicate ACKs, the congestion window cwnd is halved; and 
on retransmit timeout, cwnd is set to one. The assumption is 
that packet loss may reveal a congested non-XCP router in the 
path and transiting to standard TCP behavior is a conservative 
response. However, if we are sure that all routers along the 
path support router-assisted congestion control, such slow-
down reaction should be unnecessary for packet loss caused 
by bit error. 
 For TCP, the sender needs to slow down on detecting 
packet loss because packet loss is the congestion signal for 
TCP. This is due to the design rationale of TCP congestion 
control. A TCP flow keeps increasing its sending rate and 
intentionally fills up the buffer of the bottleneck router to 
generate packets drops. Through this approach TCP finds the 
available capacity of the path. But for router-assisted 
approach, since congestion information has already been 
wrapped in the special packet header and communicated to the 
sender, the sender should not insist treating packet loss as 
congestion signal now. In stead, it should use the information 
in the congestion header to adjust its congestion window. For 
example, in QFCP, if the loss is congestion-related, the rate 
feedback in the duplicate ACK will tell the sender to slow 
down; but if it is non-congestion-related loss, the rate 
feedback will probably be like the current sending rate of this 
flow. 
 We suggest that separate the data reliability control from 
congestion control when receiving duplicate ACKs. When the 
sender receives a duplicate ACK, it suggests that a data packet 
has successfully reached the receiver but its sequence number 
is greater than that expected by the receiver. Thus, for data 
reliability control, upon reception of 3 duplicate ACKs, the 
sender should retransmit the packet with the expected 
sequence number. While for congestion control, when a 
QFCP sender receives a duplicate ACK, it adjusts the 
congestion window to: 

dupACKnumRTTfeedbackcwnd _+⋅= , 
where feedback is the rate feedback from routers, RTT is the 



 

sender’s estimation of round-trip time, num_dupACK is the 
number of duplicate ACKs received. The inherent idea is that 
the sender temporarily keeps the successfully-transferred but 
not-in-order packets in buffer and opens the congestion 
window so that it can continue sending data at the router-
allowed rate. The counter num_dupACK is reset to zero when 
a new ACK packet arrives and cumulatively acknowledges all 
data packets sent before the detection of the loss. Note that we 
do not address complicate situations such as loss of the 
retransmission packet here and leave them for future study. 
 XCP is a little complicate and different from QFCP. QFCP 
directly uses the fair-share flow rate as the feedback and this 
rate is not changed during the current control interval. The 
rate feedback information in any single ACK is sufficient for 
us to compute the target window size. But for XCP, we may 
not be able to compute the correct window size base on the 
feedback when encountering loss. Because in XCP, each ACK 
carries unique per-packet feedback information on window 
adjustment and the information carried on lost packets may 
not be negligible. Any packet loss will cause mismatching 
between the actual window size of the sender and the target 
window size expected by the routers. XCP-r [8] suggests 
computing the congestion window size at the receiver side and 
sending the value back to the sender through ACK packets. 
This modification on XCP only deals with ACK loss but 
packet loss on the forward path may still cause the window 
mismatching problem. Another possible solution is to keep the 
window unchanged on non-congestion loss and halving the 
window on congestion loss. But firstly we need to distinguish 
the two kinds of loss in XCP. Intuitively we may say if the 
feedback is positive, it is non-congestion-related loss; and if 
the feedback is negative, it is congestion-related loss. 
However, the feedback is also used for fairness control. A 
negative feedback may possibly only want to change the 
flow’s rate toward fair-share rate and may not necessarily 
suggest congestion. Halving the cwnd or change cwnd to 1 is 
too aggressive for this case. But if the loss is congestion-
related, window adjusting only based on feedback may be not 
enough since some feedback on window reduction may be 
lost. In sum, unlike QFCP, it is not so easy for XCP to 
differentiate the two kinds of packet loss based on feedback 
information. 
 While for packet loss event triggered by retransmit timeout, 
since no feedback information available at this instant and the 
loss may be caused by severe congestion, conservatively set 
congestion window to one should be better. And if this is not a 
congestion loss, any subsequent ACK will recover the 
congestion window to the proper size in QFCP. 
 In addition, if a router drops packets due to buffer overflow, 
it should also sum up the number of dropped packets and use 
the virtual queue length when running the control algorithm. 
That is, substitute q in the algorithm with 

dropnumqqvirtual __ += . 
Thus, if packets are dropped by routers, the feedback 
computed using the virtual queue length can still precisely 
reflect the congestion condition. 

IV. SIMULATION RESULTS 

 
Fig. 1.  Simulation network topology 

 
 In this section we present simulation results using ns-2 [9]. 
The network topology is shown in Fig. 1. An IEEE 802.11 
Wireless LAN is connected to a wired high-speed network 
through a base station (BS). The MAC-layer data rate of the 
802.11 WLAN is 11 Mbps and the basic rate is 1 Mbps. All 
wired links are duplex links with fixed capacity of 1 Gbps so 
that only the wireless link can become the bottleneck. The 
minimum round-trip propagation delay is 40 ms. Data packet 
size is 1000 KB and ACK packet size is 40 KB. The buffer 
size on routers for each output link is 100 packets. For TCP 
simulations, we choose TCP NewReno and use DropTail as 
the queue management scheme. We use the original codes of 
XCP embedded in ns-2 and the XCP-b codes provided by its 
authors. All algorithm parameters are configured using the 
default values as recommended by the authors. We have 
implemented the enhancements for wireless networks 
discussed above in QFCP. In the rest of this paper, we will use 
QFCP to denote “QFCP with wireless enhancement” for 
convenience. 

A. One Flow Dynamics 
 Here we simulate one downloading flow from a wired node 
to a wireless node in the WLAN to demonstrate the dynamics 
of three different protocols: TCP, XCP and QFCP. For router-
assisted protocols (XCP and QFCP), the bandwidth parameter 
C of any wireless interface is set to 1 Mbps for Fig. 2(a) and 
10 Mbps for Fig. 2(b). Since TCP does not need such setting 
and it behaves in the same way for both cases, TCP is omitted 
in Fig. 2(b). We record the congestion window size, the 
goodput, the retransmitted bytes, and the bottleneck queue 
length. 
 For TCP, it is able to achieve high goodput but at the cost 
of massive packet drops and large persistent queue. The large 
amount of retransmission is due to TCP’s probing approach. 
TCP keeps increasing the flow rate until packets are dropped 
by the bottleneck router (buffer overflow). Dropped packets 
require retransmission and this wastes the valuable bandwidth 
resource. In addition, TCP keeps large queues on routers, 
which brings extra queueing delay and increases the overall 
latency of the path. 
 For XCP, it requires that the router knows the exact 
capacity of the output link, and its performance heavily 
depends on the link bandwidth setting C. If C is 



 

underestimated (Fig. 2(a)), its goodput is low and the link is 
underutilized. If C is overestimated (Fig. 2(b)), its feedback 
tends to increase the flow rate to an unachievable value, which 
causes the queue to grow toward infinity and the buffer to 
overflow. That is why many packets are dropped and the 
queue length oscillates between zero and the maximum buffer 
size. 
 For QFCP, the results show that the proposed probing 
algorithm works quite well no mater what the initial value of 
link bandwidth is set to. QFCP always finds the correct 
estimation of the wireless link capacity in a short time. Its 
goodput is high and stable, and its queue length is small. 
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(a) C = 1 Mbps (b) C = 10 Mbps 

Fig. 2.  Performance comparison of TCP, XCP and QFCP on wireless link 
with unknown bandwidth 
 

B. Multiple Flows with Different RTTs 
 In this simulation there are twelve flows start transferring 
data at time 0. Flows are in both directions, either from a node 
in the wired network to a wireless node in the 802.11 WLAN 
(downloading) or opposite (uploading). The flows’ round-trip 
propagation delays vary from 40 ms to 370 ms. We use the 
Jain Fairness Index [10] to evaluate the fairness of bandwidth 
allocation among competing flows: 
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where xi is the average throughput of flow i during a interval 
and n is the number of flows. We compute the Jain index 
every 1 second. 
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(a) cwnd of 12 QFCP flows (b) cwnd of 12 TCP flows 
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(c) Jain Fairness Index 

Fig. 3.  Twelve flows in both directions sharing a wireless link 
 
 For QFCP, although the wrong estimation of wireless link 
capacity causes some throughput oscillations at the beginning, 
its effect is alleviated shortly after 2-3 seconds since the 
probing algorithm in QFCP controller finds the correct 
bandwidth value (Fig. 3(a)). Then the bandwidth is allocated 
equally among flows because the same rate feedback is sent to 
all flows. The senders open their congestion window 
proportional to their RTTs (i.e., cwnd = feedback * RTT) and 
achieve good fairness on the throughput (Fig. 3(c)). 
 TCP also has its embedded algorithm to probe the available 
bandwidth, which is the additive increase multiplicative 
decrease (AIMD) algorithm. AIMD has been proved that it 
can help flows with the same RTT achieve fairness on 
throughput. However, as shown in Fig. 3(b), TCP’s 
performance degrades significantly in this scenario. One 
reason is that flows with short RTTs grow their windows 
faster than flows with long RTTs (e.g., the different slopes of 
incensement in Fig. 3(b)). Another more important reason is 
that a wireless link is simplex, and downloading and 
uploading flows compete for this wireless channel. But all 
downloading flows have only one node (the base station) to 
contend for the media access while each uploading flow has 
its own node to contend. The result is that downloading flows 
are unable to gain their fair share of the wireless bandwidth 
using TCP and keep sending at very low rates. Fig. 3(c) 
confirms that TCP’s fairness index is low in this scenario. 
While for QFCP, since it takes control of all packets in both 
directions on simplex wireless links, it fairly allocates the 



 

bandwidth among all flows. 

C. Fairness between Lossy and Lossless Flows 
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Fig. 4.  One lossy flow competing with one lossless flow 

 
 This scenario tests for the protocol’s sensitivity to non-
congestion-related loss. A uniform loss model is injected into 
the wireless link so that it can randomly generate non-
congestion-related loss at a fixed probability. The packet loss 
rate we have investigated varies from 0.0001 to 0.1 and covers 
most typical loss rates seen in a wireless network. Due to 
space restriction, here we just demonstrate typical results of 
packet loss rate = 0.01. The bandwidth parameter C is initially 
set to 1 Mbps since we do not know the exact bandwidth 
capacity for each wireless node and expect the probing 
algorithm to find it. The minimum round-trip time is 200 ms. 
We compare the performance of QFCP and XCP-b in this 
scenario. 
 XCP-b [7] is a XCP variant enhanced with an algorithm to 
probe the available bandwidth when the link capacity is 
unknown. However, it does not take packet loss into account. 
As shown in Fig. 4, XCP-b cannot maintain a large congestion 
window when bit-error packet loss happens randomly. Its 
congestion window is frequently halved or set to one due to 
packet loss. This window shrinking significantly reduces the 
flow rate and prevents the probing algorithm of XCP-b to 
work efficiently. Furthermore, when one lossy flow competes 
with one lossless flow, XCP-b treats the lossy flow as a 
congested flow and unfairly allocates bandwidth between 
them. 
 As mentioned before, packet loss is not treated as 
congestion signal in QFCP. It does not halve the window upon 
receiving three duplicate ACKs, so it can maintain a large 
window even in a lossy environment. However, sometimes 
packet loss is not recovered by the retransmission upon three 
duplicate ACKs and RTO may occur (e.g., loss of 
retransmission packet). In this case, since no router feedback 
carried on an ACK is available, QFCP conservatively set the 
window to one packet (e.g., around 17 seconds in Fig. 4). But 
if this is a non-congestion-related loss, any subsequent ACK 
will recover the window to the proper size. For the situation of 
one lossy flow competing with one lossless flow, QFCP can 

fairly allocate the bandwidth resource between them. This 
simulation shows that it is important to take care of non-
congestion-related loss when designing congestion control 
schemes for wireless environments. A bandwidth probing 
algorithm that works well on lossless link may fail on lossy 
links. 
 

V. CONCLUSION 
 Originally router-assisted congestion control protocols such 
as XCP are only designed for point-to-point full-duplex wired 
links. Though they show good performance on such links, 
they experience performance deterioration in wireless 
networks. One reason is that the sender still can not 
distinguish the two kinds of packet loss (congestion-related 
and non-congestion-related) and slow down its throughput 
unnecessarily on bit error loss. Another reason is that the 
router needs to know the exact output link capacity to 
compute the congestion feedback, but it is hard to set this 
bandwidth parameter as a fixed value for a multi-access multi-
rate wireless link. To solve these problems, we suggest that on 
receiving three duplicate ACKs, the sender only retransmits 
the lost data packet without halving the window. The router 
feedback carried in the congestion header of duplicate ACKs 
will tell the sender how to adjust its congestion window. And 
we also designed an adaptive algorithm that can probe the 
unknown link capacity based on the output traffic rate and the 
minimum queue length measured in the last control interval. 
We implement the wireless enhancements in QFCP and 
present some simulation results in ns-2. Results show that 
enhanced QFCP can work well on lossy wireless link with 
unknown bandwidth. Although we mainly take XCP and 
QFCP for example in explanation, we believe that the wireless 
enhancements described here can also be applied to other 
router-assisted congestion control schemes. 
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