

Abstract—Router-assisted explicit-feedback congestion control

protocols have recently been introduced to overcome the
inefficiency problem of TCP in high bandwidth-delay product
(BDP) wired networks. However, two main challenges are
encountered when applying this kind of congestion control to
wireless networks. One is how to distinguish the two kinds of
packet loss (non-congestion-related loss and congestion-related
loss) in lossy wireless networks as well as how to react to them
accordingly and properly. The other is how to probe the
unknown bandwidth capacity of a wireless link which is required
in calculating router feedback. Through detailed analysis of these
challenges, we have proposed some practical and novel
enhancements on router-assisted congestion control for wireless
environment. We have also implemented these enhancements in a
router-assisted congestion control protocol called QFCP.
Simulation results using ns-2 show that it can fairly allocate
wireless bandwidth resource in heterogeneous networks.

I. INTRODUCTION
 It is well-known that loss-based end-to-end congestion
control such as TCP [1] does not work efficiently in lossy
wireless networks. One reason is that TCP treats packet loss
as congestion signal but it can not distinguish non-congestion-
related loss (bit error) from congestion-related loss (buffer
overflow) leading to underutilization of wireless link. Another
reason is that after experiencing a packet loss TCP needs to
take many RTTs to recover the previous high throughput. This
effect is aggravated in high-speed wireless networks as TCP
only increases its window by one packet per RTT which is too
conservative for high-speed or long-delay links.
 Router-assisted congestion control (e.g., XCP [2], RCP [3],
QFCP [4]) is originally introduced to overcome the
inefficiency problems of TCP in high bandwidth-delay
product (BDP) wired networks, such as low link utilization,
saw-tooth-like throughput, and large queueing delay. With the
help of explicit feedback from routers to end hosts, competing
flows are able to converge to the fair-share sending rate within
a few RTTs and maintain high utilization of the bottleneck
link. While for lossy wireless networks, experiments [5] show
that XCP can achieve higher throughput than TCP. However,

1 This research was supported in part by the Hong Kong Research Grant
Council under Grant RGC HKUST6260/04E.

we note that XCP’s relatively better performance is largely
due to its fast window growth instead of robustness to
wireless loss, and there is still room for improvement.
 First, XCP still can not differentiate the two kinds of packet
loss. Actually in the current implementation of XCP the
sender reacts to packet loss in the same way as TCP does [6].
The congestion window is halved and the throughput is
slowed down unnecessarily when bit error occurs in
transmission. Although the impact of packet loss is alleviated
in XCP since it can grab the unused bandwidth much faster
than TCP, the flow throughput still suffers from frequent
window halving in lossy networks.
 Second, router-assisted congestion control requires an exact
and fixed value of link bandwidth set as a parameter in the
router’s control algorithm in advance. But for a wireless link,
due to shared-media access contention, half-duplex, and
changing physical conditions, it is very hard to do such kind
of setting. For example, for an 802.11b wireless node, it can
even dynamically change its MAC-layer data rate to 1, 2, 5.5,
or 11 Mbps making a fixed setting of bandwidth parameter
almost impossible. All of these factors cause estimation error
and performance deterioration for router feedback control.
The authors of [5] show that XCP is unable to maintain
fairness and stability with improper estimation of the link
capacity parameter. Thus, we need a more intelligent
algorithm that can probe the variable link bandwidth in
wireless networks.
 Authors of XCP-b [7] also find that XCP does not work
well on shared-access multi-rate media such as 802.11 WLAN
and propose an algorithm for XCP to probe the available
bandwidth. But the probing ability of their algorithm depends
on the buffer size Qmax and may not be suitable for wireless
nodes with small buffers but in large BDP networks. XCP-r
[8] suggests that let the receiver compute the congestion
window size and send the value back to the sender through
ACK packets. This modification on XCP partly solves the
window mismatching problem caused by ACK loss assuming
no packet loss on the forward path. We make the first effort to
combine the two problems together and solve them in a single
control framework. We choose QFCP [4] as the groundwork
to develop a robust congestion control protocol that is suitable
for wireless networks. In particular, we try to find a way to
probe the link capacity independent of the buffer size so that

Applying Router-Assisted Congestion Control to
Wireless Networks: Challenges and Solutions1

Jian Pu and Mounir Hamdi
Department of Computer Science and Engineering, HKUST, Hong Kong

{pujian, hamdi}@cse.ust.hk

1-4244-1206-4/07/$25.00 ©2007 IEEE

the algorithm can be applied on routers with any buffer size or
bandwidth capacity.

II. ROUTER-ASSISTED CONGESTION CONTROL
 Generally router-assisted congestion control can refer to
any mechanism that involves routers in congestion control
such as kinds of Active Queen Management (AQM) schemes
on routers. But here we would like to restrict the meaning of
this term to protocols that use explicit multi-bit router
feedback instead of implicit one-bit signal of packet loss to
indicate the network congestion condition so as to
differentiate from the traditional TCP/AQM approach. We
now briefly describe XCP and QFCP as examples to show
some details of this kind of congestion control.
 XCP [2] is a window-based congestion control protocol that
uses explicit feedback from routers to adjust the congestion
window size of senders. XCP introduces a new header on each
packet to carry flow information such as throughput, round-
trip time (RTT), delta-throughput (carrying the throughput
change value allowed by upstream routers), and reverse-
feedback. The Efficiency Controller (EC) on each router
periodically calculates the available bandwidth F as:

() dqyCF /⋅−−⋅= βα ,
where C is the capacity of the output link, d is the control
interval, y is the aggregate input traffic rate measured in the
last period d, and q is the minimum queue length observed in
the last period d. α and β are two constants and set as 0.4 and
0.2263 respectively to make the system stable. The control
interval d is set to be the average RTT of all flows traversing
this controller. Then the Fairness Controller (FC) on this
router computes the per-packet feedback by distributing the
available bandwidth F among all flows: If F > 0, allocate the
positive feedback equally on all flows; If F < 0, allocate the
negative feedback proportional to each flow’s current
throughput.
 The feedback is computed for each packet and is copied to
the delta-throughput field only if this feedback is less than the
current value in that field. So the delta-throughput field will
finally store the feedback calculated by the bottleneck router.
When a packet reaches the receiver, the receiver copies the
delta-throughput into the reverse-feedback field of the
corresponding acknowledgment (ACK) packet and sends the
ACK to the sender. When the sender receives this ACK, it
adjusts its congestion window (cwnd) as:

()MSSRTTfeedbackcwndcwnd ,max ⋅+= ,
where RTT is the round-trip time measured by the sender and
MSS is the maximum segment size.
 QFCP [4] is another router-assisted congestion control
protocol for high-speed networks. Unlike XCP, QFCP gives
per-flow feedback on flow rate instead of per-packet feedback
on window adjustment. There are three fields in the new
QFCP header of each packet: RTT, rate-request, and rate-
feedback. A router maintains a fair-share rate R for each

output interface. This rate R is the maximum rate allowed for
flows going through this interface during the current control
interval T. T is set to be a moving average of RTTs of seen
packets. At the beginning of every control interval the QFCP
controller estimates the number of flows traversing this
interface as:

() ()
()TtR

tytN
−

= ,

where y is the input traffic rate measured in the last interval T,
and R(t-T) is the flow rate feedback given in the last control
interval. Then the controller updates its fair-share rate R as:

()
()

()tN
T

tq
C

tR
⋅−

=
β

,

where C and q have the same meaning as in XCP, and β is a
constant of 0.5. When a packet arrives at a router, the
controller compares the value in the rate-request field with its
own fair-share rate R and copies the smaller value back into
that field. This rate-request field will eventually be copied into
the rate-feedback field of the corresponding ACK packet and
sent back to the sender by the receiver. On receiving an ACK,
the sender reads the feedback and adjusts its congestion
window as:

()MSSRTTfeedbackcwnd ,max ⋅= ,
where feedback is the router feedback on flow rate, RTT and
MSS have the same meaning as in XCP. Thus, flows can send
data at the highest rate allowed by all routers along the path,
while routers periodically update the fair-share rate based on
flow number estimation. Simulations show that both XCP and
QFCP can achieve high utilization of large BDP links, but
QFCP can further shorten flow completion time and help
flows converge to fair-share rate faster [4].

III. WIRELESS ENHANCEMENTS
 There are two challenges addressed here as applying router-
assisted congestion control to wireless networks. One is the
unknown bandwidth capacity of a simplex contention-shared
multi-rate wireless link. The other is how to deal with non-
congestion-related packet loss which commonly exists in lossy
wireless networks.

A. Enhancement for Unknown Bandwidth
 In order to accurately calculate the feedback, the router
must know the exact bandwidth capacity in advance. For both
XCP and QFCP, the output link capacity C acts as an
important parameter in the control algorithm. If the router
underestimates the bandwidth capacity, it will underutilize the
link and waste the valuable bandwidth resource. And if the
router overestimates the capacity, it will give improper
feedback to senders to increase their congestion windows and
may cause queue growth and even buffer overflow
(congestion). But it is very hard to decide a proper value of C
for a wireless link in advance. One reason is that a wireless
channel is shared by competing neighbor nodes and the

number of nodes sharing this channel may change at any time.
Another reason is that the wireless link bandwidth is affected
by many changing physical conditions, such as signal
strength, propagation distance, and transmitter power. For
example, an 802.11 node can change its MAC-layer data rate
dynamically for different physical conditions, which means
the output bandwidth of this node and other neighbor nodes
may also change.
 Due to the inability to set the exact capacity of a wireless
link, we need to design an adaptive algorithm that can finds
and sets this capacity parameter by itself. We observe that the
output traffic rate can be used to estimate the link capacity for
an active network interface and we add the following formula
in QFCP for link bandwidth probing:

()⎩
⎨
⎧

⋅+
≥

=
elseC

qifoutput
C

,1
1,

α

where q is the minimum queue length in packets observed in
the last control interval, output is the output traffic rate, and α
is a constant of 0.1. The basic idea is that:
• If the minimum queue length q is greater than or equal to

one packet, which means the output interface is busy and
keeps sending data in the last control interval, then the
output traffic rate can be a good estimation of the current
link capacity.

• If the minimum queue length is less than one packet,
which means the output link is sometimes idle and
underutilized during the last control interval, we can try
to multiplicatively increase the link capacity estimation
by a factor (1+α) and wait a control interval to see
whether the queue is going to build up.

 As to deal with the burstiness nature of packet switching
network, we actually use the weighted moving average of
output and q in the above formula to smooth out possible
oscillation caused by packet burst:

() outputavgwoutputwoutputavg _1_ ⋅−+⋅= ,

() qavgwqwqavg _1_ ⋅−+⋅= ,
where the weight w is 0.2. Repeat the above probing
procedure for each control interval and we can finally find the
proper bandwidth estimation. Note that if the link is always
idle or underutilized (i.e., a non-bottleneck link), this
estimation value may grow into infinity. So it is necessary to
put an upper bound on the value. We can simply use the
maximum MAC-layer data rate as the upper bound of C (e.g.,
11 Mbps for 802.11b, or 54 Mbps for 802.11g). And
whenever this link becomes busy again, the above algorithm
will adapt the bandwidth estimation to the correct value by
using the output traffic rate.
 There are also some implementation details we need take
care of. Since the wireless link is simplex and the bandwidth
is shared among uploading and downloading flows, the
controller should count packets in both directions when
computing the input traffic rate y. Furthermore, since our
target steady state is not zero queue length but a resident
queue with at least one packet, the formula to compute rate

feedback should be changed accordingly:

()
()

()

()

()tN
T

MSStq
C

tN
T

MSS

T

tq
C

tR

−⋅
−

=
−⋅−

=

β
β

.

 The parameter values (α, β) are chosen heuristically from
experiments, and more precise and theoretical analysis for
these parameters is left for future study.

B. Enhancement for Packet Loss
 For a sender in lossy wireless environment, it had better
differentiate two kinds of packet loss: for non-congestion-
related loss (bit error), it should maintain the current window
size; and for congestion-related loss (buffer overflow), it
should slow down to prevent congestion collapse.
Unfortunately, currently router-assisted congestion control
protocols can not do such differentiation yet. For example,
XCP simply inherits the standard TCP behavior when
encountering packet loss [6]. That is, on receiving three
duplicate ACKs, the congestion window cwnd is halved; and
on retransmit timeout, cwnd is set to one. The assumption is
that packet loss may reveal a congested non-XCP router in the
path and transiting to standard TCP behavior is a conservative
response. However, if we are sure that all routers along the
path support router-assisted congestion control, such slow-
down reaction should be unnecessary for packet loss caused
by bit error.
 For TCP, the sender needs to slow down on detecting
packet loss because packet loss is the congestion signal for
TCP. This is due to the design rationale of TCP congestion
control. A TCP flow keeps increasing its sending rate and
intentionally fills up the buffer of the bottleneck router to
generate packets drops. Through this approach TCP finds the
available capacity of the path. But for router-assisted
approach, since congestion information has already been
wrapped in the special packet header and communicated to the
sender, the sender should not insist treating packet loss as
congestion signal now. In stead, it should use the information
in the congestion header to adjust its congestion window. For
example, in QFCP, if the loss is congestion-related, the rate
feedback in the duplicate ACK will tell the sender to slow
down; but if it is non-congestion-related loss, the rate
feedback will probably be like the current sending rate of this
flow.
 We suggest that separate the data reliability control from
congestion control when receiving duplicate ACKs. When the
sender receives a duplicate ACK, it suggests that a data packet
has successfully reached the receiver but its sequence number
is greater than that expected by the receiver. Thus, for data
reliability control, upon reception of 3 duplicate ACKs, the
sender should retransmit the packet with the expected
sequence number. While for congestion control, when a
QFCP sender receives a duplicate ACK, it adjusts the
congestion window to:

dupACKnumRTTfeedbackcwnd _+⋅= ,
where feedback is the rate feedback from routers, RTT is the

sender’s estimation of round-trip time, num_dupACK is the
number of duplicate ACKs received. The inherent idea is that
the sender temporarily keeps the successfully-transferred but
not-in-order packets in buffer and opens the congestion
window so that it can continue sending data at the router-
allowed rate. The counter num_dupACK is reset to zero when
a new ACK packet arrives and cumulatively acknowledges all
data packets sent before the detection of the loss. Note that we
do not address complicate situations such as loss of the
retransmission packet here and leave them for future study.
 XCP is a little complicate and different from QFCP. QFCP
directly uses the fair-share flow rate as the feedback and this
rate is not changed during the current control interval. The
rate feedback information in any single ACK is sufficient for
us to compute the target window size. But for XCP, we may
not be able to compute the correct window size base on the
feedback when encountering loss. Because in XCP, each ACK
carries unique per-packet feedback information on window
adjustment and the information carried on lost packets may
not be negligible. Any packet loss will cause mismatching
between the actual window size of the sender and the target
window size expected by the routers. XCP-r [8] suggests
computing the congestion window size at the receiver side and
sending the value back to the sender through ACK packets.
This modification on XCP only deals with ACK loss but
packet loss on the forward path may still cause the window
mismatching problem. Another possible solution is to keep the
window unchanged on non-congestion loss and halving the
window on congestion loss. But firstly we need to distinguish
the two kinds of loss in XCP. Intuitively we may say if the
feedback is positive, it is non-congestion-related loss; and if
the feedback is negative, it is congestion-related loss.
However, the feedback is also used for fairness control. A
negative feedback may possibly only want to change the
flow’s rate toward fair-share rate and may not necessarily
suggest congestion. Halving the cwnd or change cwnd to 1 is
too aggressive for this case. But if the loss is congestion-
related, window adjusting only based on feedback may be not
enough since some feedback on window reduction may be
lost. In sum, unlike QFCP, it is not so easy for XCP to
differentiate the two kinds of packet loss based on feedback
information.
 While for packet loss event triggered by retransmit timeout,
since no feedback information available at this instant and the
loss may be caused by severe congestion, conservatively set
congestion window to one should be better. And if this is not a
congestion loss, any subsequent ACK will recover the
congestion window to the proper size in QFCP.
 In addition, if a router drops packets due to buffer overflow,
it should also sum up the number of dropped packets and use
the virtual queue length when running the control algorithm.
That is, substitute q in the algorithm with

dropnumqqvirtual __ += .
Thus, if packets are dropped by routers, the feedback
computed using the virtual queue length can still precisely
reflect the congestion condition.

IV. SIMULATION RESULTS

Fig. 1. Simulation network topology

 In this section we present simulation results using ns-2 [9].
The network topology is shown in Fig. 1. An IEEE 802.11
Wireless LAN is connected to a wired high-speed network
through a base station (BS). The MAC-layer data rate of the
802.11 WLAN is 11 Mbps and the basic rate is 1 Mbps. All
wired links are duplex links with fixed capacity of 1 Gbps so
that only the wireless link can become the bottleneck. The
minimum round-trip propagation delay is 40 ms. Data packet
size is 1000 KB and ACK packet size is 40 KB. The buffer
size on routers for each output link is 100 packets. For TCP
simulations, we choose TCP NewReno and use DropTail as
the queue management scheme. We use the original codes of
XCP embedded in ns-2 and the XCP-b codes provided by its
authors. All algorithm parameters are configured using the
default values as recommended by the authors. We have
implemented the enhancements for wireless networks
discussed above in QFCP. In the rest of this paper, we will use
QFCP to denote “QFCP with wireless enhancement” for
convenience.

A. One Flow Dynamics
 Here we simulate one downloading flow from a wired node
to a wireless node in the WLAN to demonstrate the dynamics
of three different protocols: TCP, XCP and QFCP. For router-
assisted protocols (XCP and QFCP), the bandwidth parameter
C of any wireless interface is set to 1 Mbps for Fig. 2(a) and
10 Mbps for Fig. 2(b). Since TCP does not need such setting
and it behaves in the same way for both cases, TCP is omitted
in Fig. 2(b). We record the congestion window size, the
goodput, the retransmitted bytes, and the bottleneck queue
length.
 For TCP, it is able to achieve high goodput but at the cost
of massive packet drops and large persistent queue. The large
amount of retransmission is due to TCP’s probing approach.
TCP keeps increasing the flow rate until packets are dropped
by the bottleneck router (buffer overflow). Dropped packets
require retransmission and this wastes the valuable bandwidth
resource. In addition, TCP keeps large queues on routers,
which brings extra queueing delay and increases the overall
latency of the path.
 For XCP, it requires that the router knows the exact
capacity of the output link, and its performance heavily
depends on the link bandwidth setting C. If C is

underestimated (Fig. 2(a)), its goodput is low and the link is
underutilized. If C is overestimated (Fig. 2(b)), its feedback
tends to increase the flow rate to an unachievable value, which
causes the queue to grow toward infinity and the buffer to
overflow. That is why many packets are dropped and the
queue length oscillates between zero and the maximum buffer
size.
 For QFCP, the results show that the proposed probing
algorithm works quite well no mater what the initial value of
link bandwidth is set to. QFCP always finds the correct
estimation of the wireless link capacity in a short time. Its
goodput is high and stable, and its queue length is small.

0 5 10 15 20
0

100

200

300

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
ts

)

TCP
XCP
QFCP

0 5 10 15 20

0

50

100

150

200

250

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
ts

)

XCP
QFCP

0 5 10 15 20
0

1000

2000

3000

4000

Simulation Time (seconds)

G
oo

dp
ut

 (k
bp

s)

TCP
XCP
QFCP

0 5 10 15 20

0

1000

2000

3000

4000

Simulation Time (seconds)

G
oo

dp
ut

 (k
bp

s)

XCP
QFCP

0 5 10 15 20
0

1

2

3

4
x 105

Simulation Time (seconds)

R
et

ra
ns

m
is

si
on

 (b
yt

es
)

TCP
XCP
QFCP

0 5 10 15 20

0

5

10

15
x 105

Simulation Time (seconds)

R
et

ra
ns

m
is

si
on

 (b
yt

es
)

XCP
QFCP

0 5 10 15 20
0

20

40

60

80

100

Simulation Time (seconds)

B
ot

tle
ne

ck
 Q

ue
ue

 (p
ac

ke
ts

)

TCP
XCP
QFCP

0 5 10 15 20

0

20

40

60

80

100

Simulation Time (seconds)

B
ot

tle
ne

ck
 Q

ue
ue

 (p
ac

ke
ts

)

XCP
QFCP

(a) C = 1 Mbps (b) C = 10 Mbps

Fig. 2. Performance comparison of TCP, XCP and QFCP on wireless link
with unknown bandwidth

B. Multiple Flows with Different RTTs
 In this simulation there are twelve flows start transferring
data at time 0. Flows are in both directions, either from a node
in the wired network to a wireless node in the 802.11 WLAN
(downloading) or opposite (uploading). The flows’ round-trip
propagation delays vary from 40 ms to 370 ms. We use the
Jain Fairness Index [10] to evaluate the fairness of bandwidth
allocation among competing flows:

∑

∑

=

=

⋅

⎟
⎠

⎞
⎜
⎝

⎛

= n

i
i

n

i
i

xn

x
J

1

2

2

1

where xi is the average throughput of flow i during a interval
and n is the number of flows. We compute the Jain index
every 1 second.

0 10 20 30
0

10

20

30

40

50

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
ts

)

0 10 20 30

0

50

100

150

200

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
ts

)

(a) cwnd of 12 QFCP flows (b) cwnd of 12 TCP flows

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Simulation Time (seconds)

Fa
irn

es
s

(J
ai

n
In

de
x)

QFCP
TCP

(c) Jain Fairness Index

Fig. 3. Twelve flows in both directions sharing a wireless link

 For QFCP, although the wrong estimation of wireless link
capacity causes some throughput oscillations at the beginning,
its effect is alleviated shortly after 2-3 seconds since the
probing algorithm in QFCP controller finds the correct
bandwidth value (Fig. 3(a)). Then the bandwidth is allocated
equally among flows because the same rate feedback is sent to
all flows. The senders open their congestion window
proportional to their RTTs (i.e., cwnd = feedback * RTT) and
achieve good fairness on the throughput (Fig. 3(c)).
 TCP also has its embedded algorithm to probe the available
bandwidth, which is the additive increase multiplicative
decrease (AIMD) algorithm. AIMD has been proved that it
can help flows with the same RTT achieve fairness on
throughput. However, as shown in Fig. 3(b), TCP’s
performance degrades significantly in this scenario. One
reason is that flows with short RTTs grow their windows
faster than flows with long RTTs (e.g., the different slopes of
incensement in Fig. 3(b)). Another more important reason is
that a wireless link is simplex, and downloading and
uploading flows compete for this wireless channel. But all
downloading flows have only one node (the base station) to
contend for the media access while each uploading flow has
its own node to contend. The result is that downloading flows
are unable to gain their fair share of the wireless bandwidth
using TCP and keep sending at very low rates. Fig. 3(c)
confirms that TCP’s fairness index is low in this scenario.
While for QFCP, since it takes control of all packets in both
directions on simplex wireless links, it fairly allocates the

bandwidth among all flows.

C. Fairness between Lossy and Lossless Flows

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Simulation Time (seconds)

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
ts

)

QFCP lossy flow
QFCP lossless flow
XCP-b lossy flow
XCP-b lossless flow

Fig. 4. One lossy flow competing with one lossless flow

 This scenario tests for the protocol’s sensitivity to non-
congestion-related loss. A uniform loss model is injected into
the wireless link so that it can randomly generate non-
congestion-related loss at a fixed probability. The packet loss
rate we have investigated varies from 0.0001 to 0.1 and covers
most typical loss rates seen in a wireless network. Due to
space restriction, here we just demonstrate typical results of
packet loss rate = 0.01. The bandwidth parameter C is initially
set to 1 Mbps since we do not know the exact bandwidth
capacity for each wireless node and expect the probing
algorithm to find it. The minimum round-trip time is 200 ms.
We compare the performance of QFCP and XCP-b in this
scenario.
 XCP-b [7] is a XCP variant enhanced with an algorithm to
probe the available bandwidth when the link capacity is
unknown. However, it does not take packet loss into account.
As shown in Fig. 4, XCP-b cannot maintain a large congestion
window when bit-error packet loss happens randomly. Its
congestion window is frequently halved or set to one due to
packet loss. This window shrinking significantly reduces the
flow rate and prevents the probing algorithm of XCP-b to
work efficiently. Furthermore, when one lossy flow competes
with one lossless flow, XCP-b treats the lossy flow as a
congested flow and unfairly allocates bandwidth between
them.
 As mentioned before, packet loss is not treated as
congestion signal in QFCP. It does not halve the window upon
receiving three duplicate ACKs, so it can maintain a large
window even in a lossy environment. However, sometimes
packet loss is not recovered by the retransmission upon three
duplicate ACKs and RTO may occur (e.g., loss of
retransmission packet). In this case, since no router feedback
carried on an ACK is available, QFCP conservatively set the
window to one packet (e.g., around 17 seconds in Fig. 4). But
if this is a non-congestion-related loss, any subsequent ACK
will recover the window to the proper size. For the situation of
one lossy flow competing with one lossless flow, QFCP can

fairly allocate the bandwidth resource between them. This
simulation shows that it is important to take care of non-
congestion-related loss when designing congestion control
schemes for wireless environments. A bandwidth probing
algorithm that works well on lossless link may fail on lossy
links.

V. CONCLUSION
 Originally router-assisted congestion control protocols such
as XCP are only designed for point-to-point full-duplex wired
links. Though they show good performance on such links,
they experience performance deterioration in wireless
networks. One reason is that the sender still can not
distinguish the two kinds of packet loss (congestion-related
and non-congestion-related) and slow down its throughput
unnecessarily on bit error loss. Another reason is that the
router needs to know the exact output link capacity to
compute the congestion feedback, but it is hard to set this
bandwidth parameter as a fixed value for a multi-access multi-
rate wireless link. To solve these problems, we suggest that on
receiving three duplicate ACKs, the sender only retransmits
the lost data packet without halving the window. The router
feedback carried in the congestion header of duplicate ACKs
will tell the sender how to adjust its congestion window. And
we also designed an adaptive algorithm that can probe the
unknown link capacity based on the output traffic rate and the
minimum queue length measured in the last control interval.
We implement the wireless enhancements in QFCP and
present some simulation results in ns-2. Results show that
enhanced QFCP can work well on lossy wireless link with
unknown bandwidth. Although we mainly take XCP and
QFCP for example in explanation, we believe that the wireless
enhancements described here can also be applied to other
router-assisted congestion control schemes.

REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens, "TCP Congestion Control,"

RFC2581, 1999.
[2] D. Katabi, M. Handley, and C. Rohrs, "Congestion control for high

bandwidth-delay product networks," in Proceedings of ACM
SIGCOMM, Pittsburgh, Pennsylvania, USA, 2002, pp. 89-102.

[3] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown,
"Processor Sharing Flows in the Internet," in Thirteenth International
Workshop on Quality of Service (IWQoS), Passau, Germany, 2005.

[4] J. Pu and M. Hamdi, "New Flow Control Paradigm for Next Generation
Networks," in IEEE Sarnoff Symposium, Princeton, USA, 2006.

[5] G. Nychis, G. Sardesai, and S. Seshan, "Analysis of XCP in a Wireless
Environment," www.andrew.cmu.edu/user/gnychis/xcp_wireless.pdf.

[6] A. Falk, Y. Pryadkin, and D. Katabi, "Specification for the Explicit
Control Protocol (XCP)," Internet Draft, 2006.

[7] F. Abrantes and M. Ricardo, "XCP for shared-access multi-rate media,"
ACM SIGCOMM Review, vol. 36, pp. 27-38, 2006.

[8] D. M. Lopez-Pacheco and C. Pham, "Robust transport protocol for
dynamic high-speed networks: enhancing the XCP approach," in 13th
IEEE International Conference on Networks, 2005, p. 6.

[9] "The network simulator ns-2," in http://www.isi.edu/nsnam/ns.
[10] R. Jain, The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation and Modelling: John
Wiley and Sons, 1991.

